Search results

1 – 3 of 3
Article
Publication date: 31 May 2022

Mehmet Numan Kaya, Oguz Uzol, Derek Ingham, Faruk Köse and Riza Buyukzeren

The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid…

Abstract

Purpose

The purpose of this paper is to thoroughly investigate the aerodynamic effects of blade pitch angle on small scaled horizontal axis wind turbines (HAWTs) using computational fluid dynamics (CFD) method to find out the sophisticated effects on the flow phenomena and power performance.

Design/methodology/approach

A small HAWT is used as a reference to validate the model and examine the aerodynamic effects. The blade pitch angle was varied between +2 and −6 degrees, angles which are critical for the reference wind turbine in terms of performance, and the CFD simulations were performed at different tip speed ratio values, λ = 2, 3, 4, 5, 6, 7, 9 and 10.5 to cover the effects in various conditions. Results are examined in two different aspects, namely, general performance and the flow physics.

Findings

The power performance varies significantly according to the tip speed ratio; the power coefficient increases up to a certain pitch angle at the design tip speed ratio (λ = 6); however, between λ = 2 and 4, the more the blade is pitched downwards, the larger is the power coefficient, the smaller is the thrust coefficient. Similarly, for tip speed ratios higher than λ = 8, the positive effect of the low pitch angles on the power coefficient at λ = 6 reverses. The flow separation location moves close to the leading edge at low tip speed ratios when the blade is pitched upwards and the also tip vortices become more intense. In conclusion, the pitch control can significantly contribute to the performance of small HAWTs depending on different conditions.

Originality/value

In the literature, only very little attention has been paid to the aerodynamic effects of pitch angle on HAWTs, and no such study is available about the effects on small HAWTs. The change of blade pitch angle was maintained at only one degree each time to capture even the smallest aerodynamic effects, and the results are presented in terms of the power performance and flow physics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2011

Mert Cevik and Oguz Uzol

This paper aims to present the results of a design optimization study for the impeller of a small mixed‐flow compressor. The objective of the optimization is to obtain an impeller…

1573

Abstract

Purpose

This paper aims to present the results of a design optimization study for the impeller of a small mixed‐flow compressor. The objective of the optimization is to obtain an impeller geometry that could minimize a cost function based on the specific thrust and the thrust specific fuel consumption of a small turbojet engine.

Design/methodology/approach

The design methodology is based on an optimization process that uses a configurational database for various compressor geometries. The database is constructed using design of experiments and the compressor configurations are generated using one‐dimensional in‐house design codes, as well as various tools and programs of the Agile Engineering Design System®, which is a commercially available turbomachinery design system developed at Concepts NREC. The cost function variations within the design space are represented through a neural network. The optimum configuration that minimizes the cost function is obtained using a direct search optimization procedure.

Findings

The optimization study generated a small 86 mm diameter mixed‐flow impeller with a 50° meridional exit angle. The optimized compressor, as well as the engine that it is designed for, were shown to have improved performance characteristics.

Research limitations/implications

Preliminary performance and flow analysis of the optimized impeller show shock structures and possible shock‐boundary layer interactions within the blade passages indicating further geometrical fine tuning may be required based on more detailed computational studies or experimental tests.

Practical implications

A further study including the effect of diffuser is required to carry the results to a more practical level.

Originality/value

The originality and the value of the paper comes mainly from two different aspects: combining various in‐house and commercial turbomachinery design codes in one robust methodology to obtain an optimum mixed‐flow compressor impeller that will maximize the performance requirements of a small unmanned air vehicle (UAV) turbojet engine under restricted size and power conditions; and investigation of the design optimization and analysis of a mixed‐flow compressor that could have potential applications in small jet engines to be used in high‐performance UAV applications. Design optimization studies on this type of compressor are very limited in the open literature. For many years, these compressors have been disregarded because of their bulky design in large‐scale engines. However, as mentioned above, they present a great potential for small‐scale jet engines by supplying enough pressure rise, as well as high mass flow rate compared to their centrifugal counterparts.

Details

Aircraft Engineering and Aerospace Technology, vol. 83 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 12 March 2024

Hui Zhao, Simeng Wang and Chen Lu

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial…

Abstract

Purpose

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial stage of WPP development, is directly related to the feasibility of construction and the future revenue of WPP. Therefore, the purpose of this paper is to study the siting of WPP and establish a framework for siting decision-making.

Design/methodology/approach

Firstly, a site selection evaluation index system is constructed from four aspects of economy, geography, environment and society using the literature review method and the Delphi method, and the weights of each index are comprehensively determined by combining the Decision-making Trial and Evaluation Laboratory (DEMATEL) and the entropy weight method (EW). Then, prospect theory and the multi-criteria compromise solution ranking method (VIKOR) are introduced to rank the potential options and determine the best site.

Findings

China is used as a case study, and the robustness and reliability of the methodology are demonstrated through sensitivity analysis, comparative analysis and ablation experiment analysis. This paper aims to provide a useful reference for WPP siting research.

Originality/value

In this paper, DEMATEL and EW are used to determine the weights of indicators, which overcome the disadvantage of single assignment. Prospect theory and VIKOR are combined to construct a decision model, which also considers the attitude of the decision-maker and the compromise solution of the decision result. For the first time, this framework is applied to WPP siting research.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 3 of 3